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Abstract

Purpose – To study and to analyze a second order finite-element boundary-flux approximation using
isoparametric numerical integration.

Design/methodology/approach – The numerical finite-element integration is the main method
used in this research. Since a domain with curved boundary is considered we apply an isoparametric
approach. The lumped flux formulation is another method of approach in this paper.

Findings – This research study presents a careful analysis of the combined effect of the numerical
integration and isoparametric FEM on the boundary-flux error. Some L2-norm estimates are proved for
the approximate solutions of the problem under consideration.

Research limitations/implications – The authors offer a general study within the framework of
the boundary-flux approximation theory, which completes the results of published works in this
scientific field of research.

Practical implications – A useful application is to employ appropriate quadrature formulae
without violating the precision of the boundary-flux FEM. The lumped mass approximation is also an
important practical approach to the problem in question.

Originality/value – The paper presents an entire investigation in FE boundary-flux approximation
theory, in particular, elements of arbitrary degree and domains with curved boundaries. The work is
addressed to the possible related fields of interest of postgraduate students and specialists in fluid
mechanics and numerical analysis.

Keywords Finite element analysis, Boundary-elements methods

Paper type Research paper

1. Introduction
Calculation of derivatives (flux or stresses) of finite element solutions to boundary
value problems has many important applications such as the heat of the mass transfer,
potential flow, plate stability, etc. Computing of boundary-flux is based on the idea
proposed by Wheeler (1973) and developed by Carey (1982) and Carey et al. (1985).
Different methods for boundary-flux approximations have been tested in a series of
numerical experiments on linear and nonlinear elliptic problems (Carey et al., 1985).

The standard procedure of differentiating of the approximate solution at an
arbitrary boundary point in the finite element will give an asymptotic error Oðhn2ð1=2ÞÞ
for trial functions of degree n (see, for example, the work of Barret and Elliot (1987)).
Higher order approximations to the boundary-flux than those that arise from the
straightforward differentiation of the Galerkin solution are presented in many papers
(Douglas et al., 1974; Lazarov and Pehlivanov, 1989; Pehlivanov et al., 1992). More
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recent study on superconvergent boundary-flux approximation has been presented by
Carey (2002).

This paper deals with a finite element method for planar second-order boundary-flux
problem on a bounded domain with curved boundary. Curved elements are used in the
boundary layer for getting good approximation of the boundary. Quadrature formulae
are used for computing integrals in the discrete problem. The isoparametric approach to
the problem in question requires a careful study of the combined effect of the numerical
integration and isoparametric elements on the boundary-flux error.

Drawing a presentation of L2-error estimate of the effect of the numerical integration
has been the underlying purpose of this paper. Furthermore, we aimed at analyzing the
lumped mass flux formulation and presenting some consequent algorithmic aspects.

The paper is organized as follows. Section 2 presents the boundary-flux problem,
whereas Section 3 precisely defines the isoparametric finite element transformations
and the numerical quadrature schemes. Next, the corresponding discrete formulations
are introduced and an error analysis for isoparametric triangular finite elements of
degree n $ 2 is developed in Section 4. Section 5 is devoted to the lumped mass flux
formulation. Numerical tests confirming the theoretical results are presented in Section
6. The closing section contains some concise generalizations.

2. Problem formulation
Let V , R2 be a bounded curved domain with Lipschitz-continuous boundary G.
Consider the Dirichlet problem

P

find a function u satisfying

Lu ¼ f in V;

u ¼ 0 on G

8><
>: ;

where

Lu ¼ 2
X2

i;j¼1

›

›xj
aij

›u

›xi

� �
;

is a linear elliptic operator. Suppose that the matrix A ¼ ðaijðxÞÞi;j[{1;2} is uniformly
positive definite in V and the coefficients aij ¼ aji; i; j ¼ 1; 2 belong to C 1(V).
Therefore, the operator L is strongly elliptic.

Standard notations for the Sobolev spaces (Adams, 1975) and associated norms and
seminorms are used throughout this consideration. Let V ¼ H 1

0ðVÞ; where

H 1
0ðVÞ ¼ {v [ H 1ðVÞjv ¼ 0 on G}:

We associate the usual bilinear form

aðu; vÞ ¼

Z
V

X2

i;j¼1

aijðxÞ
›u

›xi

›v

›xj
dx; u; v [ V

and the linear functional
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ð f ; vÞ ¼

Z
V

fv dx; v [ V

with the problem ðPÞ:
Since L is strongly elliptic the bilinear form að · ; · Þ is coercive on V £ V:

Furthermore, the boundedness of aij on V implies that að · ; · Þ is continuous on H 1(V).
The weak formulation of the problem ðPÞ is

PW

find a function u [ V such that

aðu; vÞ ¼ ðf ; vÞ; ;v [ V:

8<
:

We use the usual hypotheses for the smoothness of the weak solution.

C1 The boundary G is piecewise C nþ1:

C2 The right hand side f [ W n;1ðVÞ and the weak solution u [ H nþ1ðVÞ;
n $ 2:

C3 The coefficients aij [ W n;1ðVÞ:

Let us define the vector function

s ¼ 2A tð7uÞt;

where u is the solution of ðPW Þ and “t” is the sign for transposition.
The normal flux across boundary G is defined by

q ¼ s · n ¼ 2
X2

i;j¼1

aijðxÞ
›u

›xi
cosðn; xjÞ; x [ G;

where n is the outward normal vector to the boundary G. Multiplying the equality in
ðPÞ by a function v [ H 1ðVÞ and using integration by parts we get the following
relation for the flux q.

2kq; vl ¼ aðu; vÞ2 ð f ; vÞ; ;v [ H 1ðVÞ; ð1Þ

where k · ; · l denotes the inner product on the boundary, i.e.

kq; vl ¼
Z
G

qv ds:

Corresponding Sobolev spaces and associated norms for the functions defined on the
boundary are connected with this notation. Using the interpolation of the functional
spaces for m integer, we get the corresponding Sobolev spaces for noninteger m
(Adams, 1975).

3. Isoparametric finite element method and numerical integration
The point of interest is in the approximation of the flux of the solution of ðPW Þ by an
isoparametric finite element method of Lagrangian type (Ciarlet, 1978; Ciarlet and
Raviart, 1972a). To that end, for each 0 , h # 1 let th be a triangulation of V by
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triangular finite elements isoparametric equivalent to one finite element ðK̂; P̂; ŜÞ
called finite element of reference:

K̂ ¼ {ðx̂1; x̂2Þj x̂1 $ 0; x̂2 $ 0; x̂1 þ x̂2 # 1} is the canonical 2-simplex;

P̂ ¼ PnðK̂Þ; where Pn is the space of all polynomials of degree, not exceeding n;

Ŝ ¼ {x̂ ¼ ðx̂1; x̂2Þj x̂1 ¼ i=n; x̂2 ¼ j=n; i þ j # n; i; j [ N< {0}} is the set
of all Lagrangian interpolation nodes of order n.

Define the edges of the finite element of reference K̂

K̂i ¼ {x̂ [ K̂j x̂i ¼ 0}; i ¼ 1; 2; 3;

where x̂3 ¼ 1 2 x̂1 2 x̂2:

Let ðT̂; P̂
T̂
; Ŝ

T̂
Þ be the one-dimensional finite element of reference corresponding

to K̂ :

T̂ ¼ {t̂j0 # t̂ # 1} is the interval [0,1];

P̂
T̂
¼ PnðT̂Þ;

Ŝ
T̂
¼ {t̂ ¼ i=n; j i ¼ 0; 1; 2; . . . ; n} is the set of all Lagrangian interpolation

nodes of order n.

An arbitrary finite element K [ th is defined by K ¼ FKðK̂Þ; where FK [ P̂ 2 is an
invertible transformation.

We use not only straight elements but also isoparametric elements with one curved
side for getting good approximation of the boundary G. Thus we obtain a perturbed
domain Vh ¼ <K[thK of the domain V with boundary Gh.

Denote the boundary layer of th by

Bh ¼ {K [ thjK has more than one node on the boundary}:

Let K3 ¼ FKðK̂3Þ: We input the map x : T̂! K̂3 defined by xðt̂Þ ¼ ðt̂; 1 2 t̂Þ: Thus we
obtain the map xK : T̂! K3 determined by xK ¼ FK Wx:

To use optimal finite elements the validity of the hypotheses with respect to any
used triangulation th is needed.

T1 Only the elements of Bh have curved edge.

T2 The edges Ki, i ¼ 1; 2 are straight edges for all elements K in any used
triangulation th.

T3 If K [ Bh then meas ðK3 > GhÞ – 0:

T4 Any considered triangulation is n-regular in the sense of Ciarlet and Raviart
(1972b).

T5 The triangulation th is quasi-uniform for any considered h so that the usual
inverse inequalities hold (Ciarlet, 1978).

Let PK ¼ {p : K ! Rj p ¼ p̂ WF21
K ; p̂ [ P̂}: Then the finite element space Vh is

defined by
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Vh ¼ {v [ CðVhÞjvjK [ PK ; K [ th};

associated with a triangulation th. It is well known that Vh , H 1
0ðVhÞ:

Let ~V be a bounded open set satisfying V , ~V; Vh , ~V for all considered
triangulations th. Suppose that every function from H 1

0ðVÞ ðH 1
0ðVhÞÞ is extended by

zero outside of V (Vh) to R2 in a continuous way. We shall also use the space
Wh ¼ Vþ Vh: Define the approximating bilinear form

Ahðu; vÞ ¼

Z
~V

X2

i;j¼1

~aijðxÞ
›u

›xi

›v

›xj
dx; u; v [ Wh; ð2Þ

where ~aijðxÞ [ W n;1ð ~VÞ are continuous extensions of the coefficients aij(x) to ~V: The
scalar product in the spaces L2(V), L2(Vh) and L2ð ~VÞ will be written by one and the
same denotation ð · ; · Þ: Suppose that the bilinear forms (2) are uniformly Wh-elliptic,
i.e. there exists a constant ~b . 0 independent of the spaces Wh, such that for all h
sufficiently small and ;v [ Wh

~bkvk
2
1; ~V # Ahðv; vÞ:

Define the discrete problem corresponding to the problem ðPW Þ

~Ph

find u*h [ Vh that

Ah u*
h ; v

� �
¼ ð~f; vÞ; ;v [ Vh;

8><
>:

where ~f [ W n;1ð ~VÞ is an extension of the right hand side f to ~V:
The finite element approximation ð ~PhÞ of the problem ðPW Þ has matrices whose

elements involve integrals which, except in very simple examples, must be evaluated
by numerical integration or quadrature rules.

To evaluate integrals over finite elements T̂ and K̂ numerically, quadrature
formulas Z

T̂

ŵðt̂Þdt̂ ø ÎðŵÞ ¼
XN
i¼1

n̂iŵðd̂iÞ; ŵ [ CðT̂Þ; d̂i [ T̂; ð3Þ

Z
K̂

ŵðx̂Þdx̂ ø ÎðŵÞ ¼
XL
i¼1

v̂iŵðb̂iÞ; ŵ [ CðK̂Þ; b̂i [ K̂ ð4Þ

are used. Denote the set of the nodes of quadrature formulas (3) and (4) by NðT̂Þ and
NðK̂Þ; respectively.

Assume that the following hypotheses concerning the quadrature formulas hold.

Q1. All the coefficients of the quadrature formulas (3) and (4) are strictly positive.

Q2. The set NðT̂Þ ðNðK̂ÞÞ contains P̂nðT̂Þ2 ðP̂nðK̂Þ2Þ unisolvent subset.

Some properties of the quadrature formulas (3) and (4) will be determined and applied
in the next section.
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The quadrature formula on the edge K3, K [ Bh corresponding to equation (3) isZ
K3

wðxÞdl ø IK3
ðwÞ ¼ ÎðjDxK jŵÞ; ð5Þ

where ŵðt̂Þ ¼ w x21
K ðxÞ

� �
; x [ K3 and jwðw1;w2Þj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

1 þ w2
2

q
; w [ R2:

The quadrature formula over the finite element K for continuous w isZ
K

wðxÞdx ø IKðwÞ ¼ Îð J ðFKÞŵÞ; ð6Þ

where J(FK) is the Jacobian of FK.
The integrals over Gh and Vh will be computed element by element using equations

(5) and (6), respectively. Thus we obtain the approximate bilinear and linear forms

ahðv;wÞ ¼
K[th

X X2

i;j¼1

IK aij
›v

›xi

›w

›xj

� �
;

ðv;wÞh ¼
K[th

X
IKðvwÞ; ;v;w [ Vh:

Accounting of the fact that ahð · ; · Þ is uniformly Vh-elliptic (see Theorem 4.4.2 by
Ciarlet (1978)), we define the approximate problem

Ph

find uh [ Vh such that

ahðuh; vÞ ¼ ð f ; vÞh; ;v [ Vh

(

obtained by numerical integration.
Further, we shall apply the construction of n-regular isoparametric triangulation th

presented by Lenoir (1986). Consider a finite element space associated with a
triangulation th by

Vh ¼ {vh [ CðVhÞjvhjK [ PK ; vh ¼ 0 at the corners of V; K [ th}:

For any function v [ H 1ðVÞ we obtain a function vh ¼ Phðv WFhÞ; vh [ Vh; by
means of an invertible mapping Fh : Vh !V constructed by Lenoir (1986) and by
means of an interpolation operator Ph over the whole triangulation th. We input the
restriction fh : Gh ! G of the map Fh, and the restriction of the space Vh on the
boundary Gh

Sh ¼ {whjwh ¼ vhjGh
; vh [ Vh}:

Then it is possible to define the approximation gh [ Sh of any function g [ CðGÞ by
gh ¼ phðg WfhÞ; where ph is an interpolation operator on the whole boundary Gh.

Assume that the finite element solution uh of the problem ðPhÞ is already found.
Then the approximate flux across Gh can be constructed as a function qh [ Sh such
that

2kqh; vhlh ¼ ahðuh; vhÞ2 ð f ; vhÞh; ;vh [ Vh; ð7Þ

where for the approximate inner product on Gh we use
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kqh; vhlh ¼
K[Bh

X
IK3

ðqhvhÞ; ;vh [ Vh:

The identity (7) leads to a system of equations for the unknown values of qh at some
points on Gh and, consequently, on G. This procedure has been proposed by Carey et al.
(1985) for the consistent case.

The essential purpose of the present paper is to analyze the isoparametric case when
the numerical quadratures are applied to compute the inner products in equation (7).

Notations C,C1,C2, . . . , are reserved for generic positive constants, which may vary
with the context.

4. Error estimate for the boundary-flux
We associate the error functionals with quadrature schemes considered in the previous
section. Let

EKðwÞ ¼

Z
K

w dx2 IKðwÞ:

Then the total quadrature error is

Eðu; vÞ ¼
K[th

X
EKðuvÞ; u; v [ Vh:

Moreover, if

ÊðŵÞ ¼

Z
K̂

ŵ dx̂2 ÎðŵÞ;

then

EKðwÞ ¼ ÊðJ ðFKÞŵÞ:

Similarly, according to the quadrature formulas (3) and (5), we define

ÊðŵÞ ¼

Z
T̂

ŵ dt̂2 ÎðŵÞ;

and

EKðwÞ ¼ ÊðjDxK jŵÞ; w [ Sh; K [ Bh;

Eðv;wÞ ¼
K[Bh

X
EKðvwÞ; v;w [ Sh:

Suppose that the numbering of the nodes of each element K [ th is such that
J ðFKÞðx̂Þ . 0; ;x̂ [ K̂:

The space Sh is provided with a norm

kwkh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kw;wlh

p
; ;w [ Sh:

If a map F(x) is k-times differentiable, we denote the kth Fréchet derivative of F(x) by
D kF(x). Let LnðR

2;R2Þ is the space of the continuous n-linear mappings from (R 2)n to

HFF
16,1

52



R2 and K̂; K are bounded subsets of R 2. For estimating the Fréchet derivatives and
Jacobians we need the following seminorms

jFj
n;1;K̂

¼
x̂[K̂

supkDnFðx̂ÞkLnðR2;R2Þ; jF21jn;1;K ¼
x[K
supkDnF21ðxÞkLnðR2;R2Þ; n¼0;1;2; .. .

for arbitrary sufficiently smooth transformation F : K̂! K with sufficiently smooth
inverse transformation F 21. Further, we shall proceed by omitting the index
LnðR

2;R2Þ of the norms of the Fréchet derivatives and write only k · k instead of
k · kLnðR2;R2Þ:

Lemma 1. The norms k · kh and k · k0;Gh
are uniformly equivalent on the space Sh,

i.e. there exists constants c1, c2 . 0; independent of h, such that

c1kvkh # kvk0;Gh
# c2kvkh; ;v [ Sh: ð8Þ

Proof. First we argue that the map

p̂ [ P̂ðT̂Þ!
XN
i¼1

n̂i p̂
2ðd̂iÞ

 !1=2

[ Rþ

is a norm on PnðT̂Þ: It is sufficient to note that p̂ðd̂iÞ ¼ 0; 1 # i # N ; implies according

to Q1 and Q2 that p̂ ¼ 0; since the set NðT̂Þ is PnðT̂Þ-unisolvent and N $ nþ 1:
From the equivalence of all norms on the finite dimensional space PnðT̂Þ; we infer the
existence of the constants c1, c2 . 0; independent of h, such that

c1

XN
i¼1

n̂i p̂
2ðd̂iÞ

 !1=2

# kp̂k
0;T̂

# c2

XN
i¼1

n̂i p̂
2ðd̂iÞ

 !1=2

; ;p̂ [ PnðT̂Þ: ð9Þ

Denote the edge K3 of the element K [ Bh by TK. We obtain

c1ðIð p 2ÞÞ1=2 # kpk0;TK
# c2ðIð p 2ÞÞ1=2 ð10Þ

from equations (5), (9) and

C
t̂[T̂
infkDxKk

 !1=2

j f̂ j
0;T̂

# j f j0;TK
# CðjDxK j0;1;T̂

Þ
1
2j f̂ j

0;T̂
:

The restriction vhjTK
; vh [ Sh belongs to Pn(TK) for all K [ Bh: Since

jvhj0;Gh
¼

K[Bh

X
jvhj

2
0;TK

0
@

1
A

1=2

the inequalities just obtained in equation (10) imply equation (8). A
The following lemma is devoted to estimates of the total quadrature errors in Vh

and on Gh.
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Lemma 2. Let the hypotheses T1-T5 and Q1-Q2 hold and quadrature schemes
over reference finite elements T̂ and K̂ be such that

ÊðŵÞ ¼ 0; ŵ [ P2n21ðT̂Þ; n $ 2; ð11Þ

ÊðŵÞ ¼ 0; ŵ [ P2n22ðK̂Þ; n $ 2: ð12Þ

If f [ H nðVÞ and q [ H nðGÞ the following estimates hold for all vh [ Vh

jEð f ; vhÞj # Chnkfkn;Vkvhk1;Vh
; ð13Þ

jEðqI ; vhÞj # Chn21
2k~uknþ1; ~Vkvhk0;Gh

; ð14Þ

where qI ¼ phðq WfhÞ is a standard Sh-interpolant of q and ~u [ H nþ1ð ~VÞ is an
extension of the weak solution u to ~V:

Proof. The estimate (13) is a consequence of the proof of Theorem 4 by Ciarlet and
Raviart (1972b) (see also Theorems 4.1.5 and 4.4.5 by Ciarlet (1978)).Similar argument
can be applied to the estimate (14). If we denote h ¼ qI vh; the error of the quadrature
formula is

jEðqI ; vhÞj ¼ jEðh; 1Þj #
K[Bh

X
jEKðhÞj ¼

K[Bh

X
jÊðjDFK jĥÞj; ð15Þ

where FK is the restriction FK jK3
: For the seminorms of this mapping it follows

j{jDFK j}ji;1;T̂

# Ĉh iþ1 if i # n;

¼ 0 if i . n:

(

The linear functional ÊðŵÞ is bounded for ŵ [ W 2n;1ðT̂Þ: It vanishes according to
equation (11) for polynomials of degree 2n2 1: Thus, by the Bramble-Hilbert lemma
(Ciarlet, 1978)

jÊðjDFK jĥÞj # ĈkDFK jĥj2n;T̂ # Ĉ
iþj¼2n;
i#n

X
j{jDFK j}ji;1;T̂

jĥj
j;T̂

# Ĉ
iþj¼2n;
i#n

X
hiþ1jĥj

j;T̂
: ð16Þ

In the case considered we have q̂I ; v̂K [ PnðT̂Þ vhjTK
¼ v̂K W x21

K

� �
: From the Leibniz

rule and the inverse inequalities (Ciarlet, 1978, pp. 140-3) it follows that

jĥj
j;T̂

# Ĉ
lþm¼j;
n#j#2n

X
jq̂I jl;T̂jv̂K jm;T̂

# Chj2n23
2kqIkn21

2;TK
kvhk0;Tk

:

This inequality along with equations (15) and (16) lead to the estimate

jEðqI ; vhÞj # Chn21
2

K[Bh

X
kqIk

2
n21

2;TK

0
@

1
A

1=2

kvhk0;Gh
:

Denote a standard Vh-interpolant of u by uI. Using the imbedding theorems and the
fact that uI jK [ PnðKÞ we have
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jEðqI ; vhÞj # Chn21
2

K[Bh

X
kuIk

2
n;K

0
@

1
A

1=2

kvhk0;Gh
:

First, we prove that if the triangulations th satisfy the conditions T1-T5, then for
every ~v [ H nþ1ð ~VÞ; ~vjV ¼ v

K[th

X
kvIk

2
m;K

0
@

1
A

1=2

# Ck~vknþ1; ~V; m ¼ 0; 1; 2; . . . ; nþ 1: ð17Þ

Indeed, the cases m ¼ 0 and m ¼ 1 are obvious. For m ¼ 2; . . . ; n we can write

kvIkm;K # k~v2 vIkm;K þ k~vkm;K :

Assume that the isoparametric finite elements ðK̂; P̂; ŜÞ are optimal (Ciarlet and
Raviart, 1972a, b), i.e. the family they make satisfies the standard interpolation
estimates for any function ~v [ H nþ1ðKÞ: Then

K[th

X
kvIk

2
m;K

0
@

1
A

1=2

# Chnþ12mk~vknþ1;Vh
þ k~vknþ1;Vh

# Ck~vknþ1;Vh
;

;~v [ H nþ1ð ~VÞ: Using equation (17) for m ¼ n; we obtain the estimate (14). A
The next lemma is an important tool in isoparametric technique.
Lemma 3. The following estimate holds

kvhk1;Vh
# Ckvh WF21

h k1;V; ;vh [ Vh: ð18Þ

Proof. The key point of the proof is that (Lenoir, 1986)

J F21
h

� ��� ��
0;1;V

¼ Oð1Þ and jFhj1;1;Vh
¼ Oð1Þ: ð19Þ

First we prove that

kvhk0;Vh
# Ckvh WF21

h k0;V; ;vh [ Vh: ð20Þ

Changing the variables, we obtain

kvhk
2
0;Vh

¼

Z
Vh

v2
h dx

¼

Z
V

vh WF21
h

� �2
J F21

h

� �
dx

# J F21
h

� ��� ��
0;1;V

vh WF21
h

		 		2

0;V
:

It remains to apply equation (19) for completing the proof of equation (20).
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As a second step we prove that

jvhj1;Vh
# Cjvh WF21

h j1;V; ;vh [ Vh:

Changing the variables once more we get

jvhj
2
1;Vh

¼

Z
Vh

7vh ·7vh dx

¼

Z
V

D vh WF21
h

� �
DFh ·D vh WF21

h

� �
DFhJ F21

h

� �
dx

# CjFhj
2
1;1;Vh

J F21
h

� ��� ��
0;1;Vh

vh WF21
h

�� ��
1;V

:

Taking into account that equation (19) holds we get equation (18). A
Lemma 4. Let u, u*h ; and uh, be the solutions of the problems ðPW Þ; ð ~PhÞ and (Ph),

respectively. Let for some integer n $ 2; the quadrature formula (4) satisfy the
assumption (12) of Lemma 2, and hypotheses C1-C3, T4 and T5 hold. Then

Ah u*
h ; vh

� �
2 ahðuh; vhÞ

��� ��� # Chnðkuknþ1;V þ kfkn;VÞjvhj1;Vh
; ;vh [ Vh: ð21Þ

Proof. Adding and subtracting some terms in the left hand side of equation (21) we
obtain

Ah u*
h ; vh

� �
2 ahðuh; vhÞ ¼ Ah u*

h ; vh

� �
2 Ahðu WFh; vhÞ

n o
þ {Ahðu WFh; vhÞ2 Ahðuh; vhÞ}

þ {Ahðuh; vhÞ2 ahðuh; vhÞ}
¼
def A1 þ A2 þ A3:

ð22Þ

We estimate each term in the right hand side of equation (22).
Using Lemma 3 we have

jA1j # C u*
h 2 u WFh

			 			
1;Vh

jvhj1;Vh
# C u2 u*

h WF21
h

			 			
1;V

jvhj1;Vh
:

Applying Theorem 3 by Lenoir (1986) we obtain

jA1j # Chnkuknþ1;Vjvhj1;Vh
; ;vh [ Vh: ð23Þ

Let ~u [ H nþ1ð ~VÞ and ~f [ H nð ~VÞ be sufficiently smooth extensions of the solution u of
the problem ðPW Þ and the right hand side f of the problem ðPÞ to ~V: Then (Vanmaele
and Ženišek, 1993)

j ~f jn; ~V # Ckf kn;V; k~uknþ1; ~V # Ckuknþ1;V: ð24Þ

Using the triangle inequality for any vh [ Vh we obtain (Ciarlet and Raviart, 1972b)
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jA2j # Cku WFh 2 uhk1;Vh
jvhj1;Vh

# Cðku WFh 2 ~uk1; ~V þ k~u2 uhk1; ~VÞjvhj1;Vh

# CðkDFh 2 Ik0;1;Vh
kuk1;V þ k~u2 uhk1; ~VÞjvhj1;Vh

;

# Chn k~uknþ1; ~V þ
X2

i;j¼1

k~aijkn;1; ~Vk~uknþ1; ~V þ k~fkn; ~V

 !
jvj1;Vh

;

because of the estimate kDFh 2 Ik0;1;Vh
¼ OðhnÞ (Lenoir, 1986). It follows

jA2j # Chnðkuknþ1;V þ kfkn;Vh
Þjvhj1;Vh

; ;vh [ Vh ð25Þ

from equation (24).
By analogy with the inequality (13) (see also Ciarlet and Raviart (1972b) and

Theorem 4.4.4 by Ciarlet (1978)) it is easily seen that

jA3j #
K[th

X
EK

X2

i;j¼1

~aij
›uh
›xi

›vh
›xj

 !�����
�����

# Chn

K[th

X
kuhk

2
nþ1;K

0
@

1
A

1=2

jvhj1;Vh
; ;vh [ Vh:

ð26Þ

Let us continue with the application of the inequalities (17), (24) and the inverse
inequality

K[th

X
kuhk

2
nþ1;K

0
@

1
A

1=2

#
K[th

X
kuh 2 uIk

2
nþ1;K

0
@

1
A

1=2

þ
K[th

X
kuIk

2
nþ1;K

0
@

1
A

1=2

# Ch2n

K[th

X
k~u2 uhk

2
1;K þ k~u2 uIk

2
1;K

n o0
@

1
A

1=2

þ Ck~uknþ1; ~V # Ck~uknþ1; ~V # Ckuknþ1;V:

Substituting this inequality in equation (26), we obtain

jA3j # Chnkuknþ1;Vjvhj1;Vh
; ;vh [ Vh: ð27Þ

Thus the equality (22) and inequalities (23), (25) and (27) prove the estimate (21). A
Introduce the following scalar product

a qh; vhsh¼

Z
Gh

qhvh ds; qh [ Sh; vh [ Vh:
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Lemma 5. The following interpolation error estimates hold

kq Wfh 2 qIk0;Gh
# Chn21

2kuknþ1;V; ð28Þ

a q Wfh 2 qI ; vhsh# Chn21
2kuknþ1;Vkvhk0;Gh

; ;vh [ Vh: ð29Þ

Proof. Using the Bramble-Hilbert lemma we get

kq Wfh 2 qIk0;Gh
# Chn21

2kqkn21
2;G
:

Then we have from the imbedding theorems (Adams, 1975)

kqkn21
2;G

# kuknþ1;V;

which proves the required inequality (28). The estimate (29) is a consequence of

a q Wfh 2 qI ; vhsh# kq Wfh 2 qIk0;Gh
kvhk0;Gh

: A

Introduce the consistent case flux problem ð ~FhÞ corresponding to ð ~PhÞ

~Fh

find q*h [ Vh such that

2 a q*h ; vsh¼ Ah u*
h ; v

� �
2 ð f h; vÞ; ;v [ Vh

;

8<
:

where f h ¼ Phð f WFhÞ:

Lemma 6. Let q*h be the solution of the problem ð ~FhÞ and qI be the interpolant of
the weak solution q of equation (1). Suppose that the conditions of Lemma 4 are
fulfilled. Then the following estimate holds

a q*h 2 qI ; vhsh# C hnkvhk1;Vh
þ hn21

2kvhk0;Gh

� �
kuknþ1;V; ;vh [ Vh: ð30Þ

Proof. By the triangle inequality, we have

a q*h 2 qI ; vhshj # a q*h 2 q Wfh; vhshj þ j a q Wfh 2 qI ; vhshj:
������ ð31Þ

The second term in the right hand side of equation (31) can be estimated by Lemma 5 –
the inequality (29). It is obvious that vh WF21

h

� �
jG

� �
ðxÞ ¼ vh Wf21

h

� �
ðxÞ; x [ G:Then

we obtain

a q*h 2 qWfh; vhshj# a q*h ; vhsh2kq; vh Wf21
h lj þ kq; vh Wf21

h l2a qWfh; vhshj:
��������

ð32Þ

Using the theory of approximation of the boundary condition presented by Lenoir
(1986), for the second term of the right hand side of equation (32), we get

kq; vh Wf21
h l2a qWfh; vhshj# Chn21

2kqkn21
2;G
kvhk0;Gh

# Chn21
2kuknþ1;Vkvhk0;Gh

:
���

ð33Þ
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Let us consider the first term of the right hand side of the inequality (32)

aq*h ;vhsh2kq;vhWf21
h lj#

Z
Vh

f hvhdx

���� 2

Z
V

f vhWF
21
h

� �
dx

����þ a u;vhWF
21
h

� �
2Ah u*

h ;vh

� ���� ���:����
ð34Þ

The approximation of the domain gives the estimate (see Lemma 8 by Lenoir (1986))Z
Vh

f hvh dx2

Z
V

f vh WF21
h

� �
dx

����
���� # Chnkf kn;Vkvhk0;Vh

: ð35Þ

It remains to estimate the last term in equation (34). For the sake of simplicity and for
notational convenience we consider the a-forms with constant coefficients. A more
detailed but simple analysis gives the same order of convergence when the bilinear
forms have variable coefficients and the hypothesis C3 holds.

Estimate

a u; vh WF21
h

� �
2 Ah u*

h ; vh

� ���� ���
#

Z
Vh

7ðu WFhÞDF
21
h ·7vhDF

21
h J ðFhÞ dx2

Z
Vh

7ðu WFhÞDF
21
h ·7vh J ðFhÞ dx

����
����

þ

Z
Vh

7ðu WFhÞDF
21
h ·7vh J ðFhÞ dx2

Z
Vh

7ðu WFhÞ ·7vh J ðFhÞ dx

����
����

þ

Z
Vh

7ðu WFhÞ ·7vh J ðFhÞ dx2

Z
Vh

7ðu WFhÞ ·7vh dx

����
����

þ

Z
Vh

7ðu WFhÞ ·7vh dx2

Z
Vh

7u*
h ·7vh dx

����
����

# DF21
h 2 I

�� ��
0;1;V

DF21
h

�� ��
0;1;V

þ1
� �

j J ðFhÞj0;1;Vh
kuk1;Vjvhj1;Vh

þ j J ðFhÞ2 1j0;1;Vh
kuk1;Vjvhj1;Vh

þ u WFh 2 u*
h

			 			
1;Vh

jvhj1;Vh
:

Taking into account the relations (Lenoir, 1986):

DF21
h 2 I

�� ��
0;1;V

¼ OðhnÞ; j J ðFhÞ2 1j0;1;Vh
¼ OðhnÞ;

F21
h

�� ��
1;1;V

¼ Oð1Þ; j J ðFhÞj0;1;Vh
¼ Oð1Þ;

as well as the error estimate (see Theorem 3 by Lenoir (1986))

u WFh 2 u*
h

��� ���
1;Vh

# C u2 u*
h WF21

h

��� ���
1;V

# Chnkuknþ1;V;

we obtain

a u; vh WF21
h

� �
2 Ah u*

h ; vh

� ���� ��� # Chnkuknþ1;Vkvhk1;Vh
; ;vh [ Vh: ð36Þ
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Substituting the inequalities (35) and (36) in equation (34) we find

a q*h ; vhsh2kq; vh Wf21
h lj # Chnkuknþ1;Vkvhk1;Vh

:
���

Combining the latter estimate and inequalities (31)-(33), we prove equation (30). A
Lemma 7. For any vh [ Vh; there exists an element ~vh [ Vh; such that ~vh ¼ vh

on Gh and

k~vhk1;Vh
# Ch21

2kvhk0;Gh
: ð37Þ

Proof. It is enough to construct ~vh [ Vh; such that ~vh ¼ vh on Gh and ~vh ¼ 0 for all
internal nodes of the triangulation th.

Let us introduce the Hilbert space (Adams, 1975)

H 1=2ðGhÞ ¼ {v [ L2ðGhÞ : ’u [ H 1ðVhÞ such that trðuÞ ¼ v on Gh};

provided with the norm

kvk1=2;Gh
¼ inf{kuk1;Vh

: u [ H 1ðVhÞ; trðuÞ ¼ v on Gh}:

This space is dense in L2(Gh). Having in mind that ~vh ¼ 0 at any internal node of Vh

and the space Vh consists of piecewise polynomials, it is evident that

k~vhk1;Vh
# Ck~vhk1=2;Gh

:

Using the inverse inequality

k~vhk1=2;Gh
# Ch21=2k~vhk0;Gh

# Ch21=2kvhk0;Gh
;

we obtain the estimate (37). A
The following theorem contains the main result concerning boundary-flux error

estimates.
Theorem 1. Let the conditions of Lemmas 2 and 4 be fulfilled. Then the following

error estimates hold

kqh 2 qIkh # Chn21
2ðkuknþ1;V þ kfkn;VÞ; ð38Þ

kq Wfh 2 qhk0;Gh
# Chn21

2ðkuknþ1;V þ kf kn;VÞ: ð39Þ

Proof. First we prove the inequality (38). For any function vh [ Vh we have

kqh2qI ;vhlh ¼ kqh;vhlh2 kqI ;vhlh

¼ ð f h;vhÞh2ahðuh;vhÞ2a q*
h ;vhshþa q

*
h ;vhsh2a qI ;vhshþEðqI ;vhÞ

¼EðqI ;vhÞ2Eð f h;vhÞþ Ah u*
h ;vh

� �
2ahðuh;vhÞ

n o
þa q*

h 2qI ;vhsh:

ð40Þ

The four terms in the right hand side of equation (40) are estimated by equations (13),
(14), (21) and (30), respectively. Consequently, it follows the inequality
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kqh 2 qI ; vhlh # Chn21
2kuknþ1;Vkvhk0;Gh

þ Chnðkuknþ1;V þ kf kn;VÞkvhk1;Vh
:

For the second term in the right hand side we use the estimate (37) of Lemma 7 with
vh ¼ ~vh: We obtain that

kqh 2 qI ; vhlh # Chn21
2ðkuknþ1;V þ kfkn;VÞkvhk0;Gh

because vhjGh
¼ ~vhjGh

:
Finally, applying the norm equivalence for kvhk0;Gh

and kvhkh and choosing vhjGh
¼

qh 2 qI we derive the desired estimate (38).
We easily get the estimate (39). It is sufficiently to combine equation (38) with the

estimate (28). Then

kq Wfh 2 qhk0;Gh
# kq Wfh 2 qIk0;Gh

þ kqI 2 qhk0;Gh

# kq Wfh 2 qIk0;Gh
þ CkqI 2 qhkh

# Chn21
2ðkuknþ1;V þ kfkn;VÞ:

A

5. Lumped mass boundary-flux
The lumped mass formulation is often the most practical form. For instance, when the
heat and fluid flow application codes are concerned. Lumped flux formulations are
examined by Carey et al. (1985), Lazarov and Pehlivanov (1989) and Pehlivanov et al.
(1992). This approach is appropriate for various eigenvalue problems (Andreev and
Todorov, 1999, 2004). In the case of lumped flux approach the integrals a · ; ·sh are
evaluated using quadrature formula with quadrature nodes coincident with the
element nodes. Applying such a type formula a diagonal coefficient matrix results and
hence the flux qh is determined explicitly.

The estimate (38) implies that

kqh 2 qIk0;Gh
¼ ½ðQh 2 QÞtM ðQh 2 QÞ�1=2 ¼ O hn21

2

� �
;

where Q ¼ ðqða1Þ; qða2Þ; . . . ; qðadhÞÞ; ai [ Gh; i ¼ 1; 2; . . . ; dh; dh ¼ dimðShÞ is the
vector containing the exact values of the boundary-flux at the nodes on G and Qh ¼
ðqhða1Þ; qhða2Þ; . . . ; qhðadh ÞÞ is the corresponding approximating vector obtained by
the numerical integration. Here M is a mass matrix obtained by the inner product
a · ; ·sh on the boundary Gh.

Problem (7) leads to the system of linear equations MQh ¼ F for the vector Qh.
The right hand side F is a known vector.

We lump the mass matrix into a diagonal form M and find the approximate values
at the grid nodes from the system MQh ¼ F with diagonal matrix M : We confine to
the case n ¼ 2: Consider a quadrature formula giving diagonal matrix MZ

T̂

ŵðt̂Þ dt̂ , ÎðŵÞ ¼
1

6
ŵð0Þ þ 4ŵ

1

2

� �
þ ŵð1Þ

� �
: ð41Þ

The formula (41) represents the Simpson rule and it is exact for all polynomials
belonging to P3ðT̂Þ: The quadrature formula over the finite element of reference K̂ is
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Z
K̂

ŵðx̂Þ dx̂ , ÎðŵÞ ¼
1

120



3½ŵð0; 0Þ þ ŵð1; 0Þ þ ŵð0; 1Þ�

þ8 ŵ
1

2
; 0

� �
þ ŵ

1

2
;
1

2

� �
þ ŵ 0;

1

2

� �� �
þ 27ŵ

1

3
;
1

3

� �

:

ð42Þ

This formula is also exact for all polynomials from P3 (Ciarlet, 1978, p. 184). The
numerical integration for the isoparametric case using equation (42) is analyzed by
Andreev and Todorov (1999), where lumped mass approximation for second-order
eigenvalue problem is considered.

Both formulas (41) and (42) are related to each other in the following sense:
. they are equivalent with respect to the precision, i.e. they are exact for all

polynomials of degree three; and
. both quadrature formulas have common set of nodes on the hypotenuse of the

finite element of reference.

Theorem 2 gives an error estimate in the lumped mass case.
Theorem 2. Let us keep the conditions of Theorem 1 and let the integrals in

equation (7) be evaluated by quadrature formulas (41) and (42), respectively. Let also
the hypotheses T1-T5 and C1-C3 are valid for n ¼ 2 and the approximate
boundary-flux is computed by the formula (7). Then

kq2 qhkh # Ch
3
2ðkuk3;V þ kfk2;VÞ; ð43Þ

Proof. It is easy to verify the validity of the hypotheses Q1 and Q2. Consequently,
we have the norm equivalence equation (8). We obtain

jEð f ; vhÞj # Ch 2kfk2;Vkvhk1;Vh
;

jEðqI ; vhÞj # Ch
3
2kuk3;Vkvhk0;Gh

; ;vh [ Vh:

from Lemma 2. Proceeding as in the case without lumping, we obtain the estimates
(21), (28) and (30) with n ¼ 2: But, as far as the lumped mass matrix case is concerned,
the approximate inner product ku; vlh deals only with the values of the functions u and
v at the nodes of the quadrature formula, which at the same time are nodes of the finite
elements. Then

kq2 qhkh ¼ kqI 2 qhkh:

It remains to apply the estimate (38) with n ¼ 2 in order to prove the theorem. A

6. Numerical tests
The point of discussion inhere is the boundary-flux calculation using numerical
integrations. At the beginning we consider some algorithmic aspects.

Denote: the set of nodes of the triangulation th by Nh; the set of nodes belonging to
Gh by NBh: Define NIh ¼ NhnGh: Let {wi}, i ¼ 1; 2; . . . ; cardðNhÞ associated with
ai [ Nh be the nodal basis in Vh. Define the spaces
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VBh ¼ Span{wi}i:ai[NBh
;

VIh ¼ Span{wi}i:ai[NIh
:

We shall use the vectors and matrices

A ¼ ðahðwi;wjÞÞi;j:ai ;aj[NIh
;

uh ¼ ðuhðaiÞÞi:ai[NIh
;

qh ¼ ðqhðaiÞÞi:ai[NBh
;

C ¼ ðahðwi;wjÞÞi;j:ai[NIh;aj[NBh
;

M ¼ ðkwi;wjlhÞi;j:ai ;aj[NBh
;

F I ¼ ðð f h;wiÞ; i : ai [ NIhÞ;

F B ¼ ðð f h;wiÞ; i : ai [ NBhÞ:

Write a matrix form of problem (7)

2
0 0

0 M

 !
0

qh

0
@

1
A ¼

A C

C t 0

 !
uh

0

 !
2

F I

F B

 !
ð44Þ

There are different approaches for solving problem (44). We choose the case with a
lumped mass matrix. Initially, we eliminate uh from equation (44) making complete

Cholesky factorization of the matrix A ¼ LAL
t
A; where LA is a lower triangle matrix.

Then

2Mqh ¼ C tL2t
A L21

A F I 2 F B
¼
def ~FB:

Since we consider the method with lumped mass, it is not necessary to construct the
matrix M. It is enough to compile the vector m by mi ¼ M21

ii ; i ¼ 1; 2; . . . ; dh: We
compute the solution qh from qh ¼ m* ~F B; where the multiplication “*” is defined by
v*w ¼ ðv1w1; v2w2; . . . ; vnwnÞ [ Rn; ;v;w [ Rn:

The above algorithm enables us to improve the accuracy of calculation and for
decreasing the necessary computer resource. Andreev and Todorov (2004) showed that
for the similar problem with different dimensions, the lumped mass technique gives the
best results among many different approaches. Moreover, it is proved that the iterative
solutions of systems such as equation (44) are stable, i.e. the used block splitting is
applicable.

Continue with numerical examples. Consider a model problem

2Du ¼ 12xy in V; u ¼ 0 on G; ð45Þ

where V is a quarter of the unit disc and G ¼ G1 < G2 < G3 (Figure 1). The exact
solution of problem (45) is

uðx; yÞ ¼ xy2 x 3y2 xy 3:

Then the flux across the boundary is
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q ¼

y2 y 3; 0 # y # 1 on G1;

x2 x 3; 0 # x # 1 on G2;

2x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 x 2

p
; 0 # x # 1 on G3:

8><
>:

Further, we illustrate the rate of convergence a arising from the considered finite
element method. Using the approximate solution on two different meshes, we have

kq2 qhkh ¼ Cha;

kq2 qh=2kh=2 ¼ C h
2

� �a
:

(

Then

a ¼

log kq2 qhkh
kq2 qh=2kh=2

log 2
:

Example 1. For problem (45) we use the conditions of Theorem 2. The triangulations
consist of the 6-node isoparametric elements. The quadrature formula (41) gives the
lumped mass matrix and the integrals over the elements are evaluated by the 7-node
isoparametric integration equation (42) (Vanmaele and Ženišek, 1993). An initial
triangulation for solving problem (45) is shown in Figure 1. A

Example 2. Here we find a solution of problem (45) on the basis of the 10-node
isoparametric elements. Keeping the optimal rate of convergence for the approximate
boundary flux, we make use of the following Radon quadrature formula (Hammer et al.,
1956)Z

K̂

ŵðx̂Þ dx̂ , I
K̂
ðŵÞ ¼

9

80
wðv̂7Þ þ

155 þ
ffiffiffiffiffi
15

p

2; 400
½wðv̂1Þ þ wðv̂2Þ þ wðv̂6Þ�

þ
155 2

ffiffiffiffiffi
15

p

2; 400
½wðv̂3Þ þ wðv̂4Þ þ wðv̂5Þ�; ŵ [ CðK̂Þ

ð46Þ

where

v̂1 ¼ ðẑ3; ẑ1Þ; v̂2 ¼ ðẑ1; ẑ3Þ; v̂3 ¼ ðẑ4; ẑ2Þ; v̂4 ¼ ðẑ2; ẑ4Þ;

v̂5 ¼ ðẑ2; ẑ2Þ; v̂6 ¼ ðẑ3; ẑ3Þ; v̂7 ¼ ðẑ5; ẑ5Þ;

Figure 1.
An initial decomposition
of the domain V by 6-node
finite elements
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and

ẑ1 ¼
9 2 2

ffiffiffiffiffi
15

p

21
; ẑ2 ¼

6 2
ffiffiffiffiffi
15

p

21
; ẑ3 ¼

6 þ
ffiffiffiffiffi
15

p

21
; ẑ4 ¼

9 þ 2
ffiffiffiffiffi
15

p

21
; ẑ5 ¼

1

3
:

The quadrature formula (46) is exact for all polynomials of degree five.
For computing the approximate scalar products on the boundary we use a Gauss

quadrature formula exact for all polynomials of degree five

Z
T̂

ŵðx̂Þ dx̂ , I
T̂
ðŵÞ ¼

1

18
8w

1

2

� �
þ 5w

1 2

ffiffi
3
5

q
2

0
@

1
Aþ 5w

1 þ

ffiffi
3
5

q
2

0
@

1
A

0
@

1
A;

where ŵ [ CðT̂Þ:
The computational process in Example 2 is more complicated because the mass

matrix is not diagonal. Therefore, we make complete Cholesky factorization for
inversion of this matrix. In this case we need greater computer resources. A

The results obtained in both examples are presented in the comparative Table I. The
confirmation of the theoretical achievements is performed (estimates (39) and (43)).

7. Concluding remarks
The obtained convergence results for the isoparametric boundary flux enable us to
conclude that:

. We have proved the optimal order of convergence subject to the hypotheses that
are presupposed. These hypotheses are not too restrictive regarding the
isoparametric approach.

. The precision of the quadrature formulas presented in equations (11) and (12) is
crucial for proving the order of convergence. In this respect, the one-dimensional
Lobatto quadrature formulas could be mentioned.

. Although the investigations on the lumped mass approximation are performed
for quadratic triangular finite elements, they could be applied to more general
elliptic systems and other types of finite elements. It is necessary to combine the
appropriate quadrature formula, satisfying the conditions Q1 and Q2 with
nodes coinciding with the nodes of the finite element.

kq2 qhkh
6-node finite elements 10-node finite elements

4 elements 0.8351214066 0.0609879166
16 elements 0.2811585814 0.0106510992
a 1.57060 2.51752
16 elements 0.2811585814 0.0106510992
64 elements 0.0950408902 0.0018609964
a 1.56476 2.51686
64 elements 0.0950408902 0.0018609964
256 elements 0.0334027457 0.0003253089
a 1.50858 2.51619
256 elements 0.0334027457 0.0003253089
1,024 elements 0.0118019900 0.0000571134
a 1.50093 2.50991

Table I.
Asymptotic rate of

convergence a obtained
in the examples
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. The method hereby presented, could be used in the cases when two subdomains
have curved interface.
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